
Sam
ple

Security Principles for PHP Applications III

1	 Application Security From First Principles� 1
The Common Mistake	 � 2
An Example of Broken Standards Implementation—JOSE	 � 3
A Security-First Mindset	 � 4
Accurate Threat Models	 � 5
Looking Ahead	 � 6

2	 About This Book� 7
Who This Book Is For	 � 7
How to Use This Book	 � 8
Code Examples	 � 8

3	 OWASP� 11
The OWASP Top Ten	 � 11
The Risk of Lists	 � 14

Table of
Contents

Sam
ple

Security Principles for PHP ApplicationsIV

Table of Contents

4	 ASR1: Injection� 15
How Big of a Deal Is This?	 � 16
How Would This Look in Production?	 � 17
How to Prevent These Vulnerabilities	 � 23
Conclusion	 � 29

5	 ASR2: Broken Authentication and Session Management� 31
Issues Facing Authentication	 � 32
How Could Each of These Be Fixed?	 � 38
Conclusion	 � 44

6	 ASR3: Sensitive Data Exposure� 45
What Are Some of the Practical Risks to Sensitive Data?	 � 46
How Can These Risks Be Effectively Mitigated?	 � 51
Conclusion	 � 56

7	 ASR4: XML External Entities (XXE)� 57
How an Application Can Be Exploited	 � 58
How Do We Prevent Loading External Elements?	 � 59
How Do We Prevent Expanding Elements?	 � 60
Conclusion	 � 60

8	 ASR5: Broken Access Control� 61
How Would This Look in Production?	 � 62
Has This Ever Happened?	 � 64
How Would This Code Look If Patched?	 � 65
Conclusion	 � 67
What Did United Airlines Do?	 � 67

Sam
ple

﻿

Security Principles for PHP Applications V

9	 ASR6: Security Misconfiguration� 69
How Would This Look in Production?	 � 70
How Would This Code Look If Patched?	 � 74
Conclusion	 � 79

10	 ASR7: Cross-Site Scripting (XSS)� 81
How Would This Look in Production?	 � 82
How Would This Code Look If Patched?	 � 86
Conclusion	 � 89

11	 ASR8: Insecure Deserialization� 91
Object Injection Vulnerabilities	 � 92
DoS Vulnerabilities	 � 95
Potential Production-Ready Solutions	 � 96
Conclusion	 � 97

12	 ASR9: Using Components With Known Vulnerabilities� 99
What Does This Look Like in Code?	 � 100
Are Libraries the Only Risk?	 � 102
PHP as a Root Dependency	 � 104
How Do You Protect Yourself?	 � 104
Auditing the Entire Application Stack	 � 105
Conclusion	 � 106

Sam
ple

Security Principles for PHP ApplicationsVI

Table of Contents

13	 ASR10: Insufficient Logging and Monitoring� 107
Why Logging Matters	 � 108
What Events Should We Log?	 � 108
What Data Should We Log?	 � 111
How Should We Log Data?	 � 112
How Much Logging Is Too Much?	 � 112
Conclusion	 � 113

14	 Keeping Ahead of the Trends� 117
A Living Standard	 � 118

15	 Insufficient Attack Prevention� 121
How Would This Look in Production?	 � 122
Request Size	 � 123
In the Wild: WordPress XML-RPC Vulnerability	 � 124
What Can I Do About It?	 � 126
Conclusion	 � 131

16	 Underprotected APIs� 133
What Are Some of the Potential Vulnerabilities?	 � 134
How Can These Be Prevented?	 � 137

17	 Cross-Site Request Forgery (CSRF)� 147
How Would This Look in Production?	 � 148
How Could This Be Prevented?	 � 151
How Do the Various PHP Frameworks Handle CSRF?	 � 154
Conclusion	 � 159

Sam
ple

﻿

Security Principles for PHP Applications VII

18	 Unvalidated Redirects and Forwards� 161
How Would This Look in Production?	 � 162
How Would This Code Look If Patched?	 � 165

19	 Peer Code Review� 169
Red Teaming	 � 172

20	 Further Reading and Resources� 175
Static Code Analysis	 � 175
PHP_CodeSniffer	 � 176
Paid Utilities	 � 176
Security Audits	 � 177
The PHP Community	 � 178
Mailing Lists and Feeds	 � 178
Blogs and Resources	 � 179
Conferences and Workshops	 � 179

21	 Responsible Disclosure� 181
How to Disclose	 � 182
How to Handle Disclosure	 � 183

	 Index� 185
Sam

ple

Security Principles for PHP Applications 15

Chapter

4
ASR1: Injection

Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted data
is sent to an interpreter as part of a command or query. The attacker’s hostile data
can trick the interpreter into executing unintended commands or accessing data
without proper authorization.

The risk of injection is one of the most common and well-known vulnerabilities in application
development. From a high level, injection attacks happen when an attacker has the ability to control
the input of your program. If they can write directly to a database, such that their nefarious data is
passed unfiltered, they can inject whatever control systems they wish.

A common injection vulnerability is passing parameters directly from the $_POST superglobal,
which is user-controlled, into a SQL statement:

VULNERABLE

// a common SQL injection vulnerabilty
$name = $_POST['name'];
$sql = "SELECT * FROM users WHERE email='$name'";
$result = $db->query($sql);

Sam
ple

Security Principles for PHP Applications16

ASR1: Injection

Assume for a moment this code is meant to look up ticket information for a given user attending
a conference. A regular form submission would send the user’s email to the server and return a row
from the database representing that ticket. Consider instead what would happen if an attacker were
to trigger the following cURL request:

curl -X POST -d "name=a@b.com' OR 1=1;--" http://yoursite.com

The server would accept this value and happily concatenate it into the SQL query, generating the
following statement:

SELECT * FROM users WHERE email='a@b.com' OR 1=1;--'

The OR in this query will always evaluate to true, and the -- at the end forces any content following
the broken query to be treated as a comment. Instead of returning a specific user’s data, this new
query will return the entire users table from the database! The attacker now has all of your attendees’
information and can do whatever they wish with it. Further, an attacker could inject any query
following this same pattern, potentially injecting, modifying, or even deleting data.

In the PHP world, injection like this occurs when developers erroneously trust user input. The
vulnerable code above allowed users direct input into SQL queries, making the database do some-
thing other than it was intended. Other users can manipulate query variables that are used internally
to switch application logic from one, expected flow to another. Still, other users might inject execut-
able PHP code into a header that is extracted and inadvertently executed by the application, giving
this user control over the PHP stack itself.

Said another way, injection is when you, the developer, give a user the power to dictate what code
is being executed. You’re then running their application, and they can do whatever they want. They
can dump sensitive data to output. They can write extraneous files to disk. They can insert malicious
information into the database. The sky is the limit.

At a minimum, allowing users to download, install, and execute arbitrary scripts could let them
fill your server’s hard disk with junk. The worst-case scenarios, however, are far more chilling. Among
other things, an attacker could:

•	 Use your server as part of a network to launch a denial-of-service attack against someone else.
•	 Send spam or phishing emails to third parties.
•	 Use your server as a proxy or host for other illegal activities.

Abdicating control over the behavior of your application to arbitrary users gives those users a
great deal of power; at the end of the day, though, you are still ultimately responsible for what your
server does.

How Big of a Deal Is This?
It’s easy as a developer to discount injection as a serious risk to your application. Often, injection

vulnerabilities are reported as the ability for a rogue user to input garbage into an application—the
easiest response to such a report is to shrug it off as “garbage in, garbage out.”

Sam
ple

How Would This Look in Production?

Security Principles for PHP Applications 17

Note: It’s equally easy to discount injection vulnerabilities applying only to trusted admin or supe-
ruser access. Many developers will, mistakenly, assume the only users who ever have access to these
accounts are “trusted” in the first place. However, if the application ever exposes a privilege escala-
tion vulnerability, or one of these privileged users is tricked into running a malicious command, the
consequences to your application could be huge. The chapters on ASR5: Broken Access Control and
Cross-Site Request Forgery have deeper explanations of each issue.

These reports of garbage being inserted into database fields often come from researchers using
tools to “fuzz test”[1] your application. Fuzz testing is the practice of providing broken, unexpected, or
purely random input to an application to see what happens. With binary, non-memory-safe applica-
tions this is an excellent way to test the handling of invalid input.

Are strings accepted in place of integer inputs? What happens when I pass a control character to a
function which otherwise takes benign input? Can I make the application do something unexpected?
Can I use this behavior to manipulate the application into doing something other than what was
intended?

In some situations, though, the garbage input does make the application behave in ways it’s not
supposed to. The popular webcomic, xkcd.com, illustrates various security principles on occasion. In
this instance, the danger of allowing user input into a SQL statement, see Exploits of a Mom[2].

The ability to inject non-alphanumeric characters into a SQL statement makes it trivial to inject
your own queries into an otherwise trusted framework. An attacker can SELECT data to which they’d
otherwise lack access. Another attacker could insert themselves into a list of “administrator” users in
the database and take control of the system. Yet another attacker could merely destroy the data upon
which your application relies.

Further, not protecting against certain character sets can negatively impact your users down the
road. Consider users with names containing apostrophes (“O’Malley” or similar) or non-Latin char-
acters. Any of these could potentially break a SQL statement if not properly escaped.

Injection attacks happen frequently in the wild, most frequently when developers are using unpa-
rameterized SQL queries or otherwise passing untrusted user input into executable environments.
They give the user (or an attacker) a level of control over the system equivalent to the application
itself.

[1]	 “fuzz test”: http://phpa.me/wikipedia-fuzzing
[2]	 Exploits of a Mom: https://xkcd.com/327/

How Would This Look in Production?
Attackers can inject their code into your application in three different ways:

1.	 They can inject additional queries into a SQL statement.
2.	 They can render malicious user-submitted input through a form (or query or header) that is

then used directly in PHP. This also allows cross-site scripting attacks, covered in detail later

Sam
ple

http://phpa.me/wikipedia-fuzzing
https://xkcd.com/327/

Security Principles for PHP Applications18

ASR1: Injection

in the chapter on CSRF.
3.	 They can upload an executable script which is later invoked through another exposed vulner-

ability.
The code exposing these vulnerabilities looks slightly different in each case, but all have the same

root characteristic: the code trusts user input to fall within certain bounds. It also fails to validate the
input or those bounds.

SQL Injection
An older WordPress plugin I built suffered from an injection-related flaw somewhat recently.

While I was trying to do my best to protect code from untrusted user input, I mistakenly assumed
certain parameters were escaped that, in fact, were not.

The code in question had two fatal flaws. The code was trusting data stored within user-provided
cookies; in this case, it trusted it had generated a session ID stored within a cookie itself.

In the application’s session controller, the following constructor would grab a predefined cookie
and extract various data from it. The code assumes the first part of the cookie is a valid session ID
and stores it in the controller for later use.

Listing 4.1 VULNERABLE
 1. protected function __construct() {
 2. if (isset($_COOKIE[WP_SESSION_COOKIE])) {
 3. $cookie = stripslashes($_COOKIE[WP_SESSION_COOKIE]);
 4. $cookie_crumbs = explode('||', $cookie);
 5.
 6. $this->session_id = $cookie_crumbs[0];
 7. $this->expires = $cookie_crumbs[1];
 8. $this->exp_variant = $cookie_crumbs[2];
 9.
10. // Update the session expiration if we're past the variant time
11. if (time() > $this->exp_variant) {
12. $this->set_expiration();
13. delete_option("_wp_session_expires_{$this->session_id}");
14. add_option("_wp_session_expires_{$this->session_id}",
15. $this->expires, '', 'no');
16. }
17. } else {
18. $this->session_id = WP_Session_Utils::generate_id();
19. $this->set_expiration();
20. }
21.
22. $this->read_data();
23. $this->set_cookie();
24. }

Sam
ple

Security Principles for PHP Applications 185

Index
A
access control

 Access-Control-Allow-Origin, 156

 maintaining fine-grained, 69

 role-based, 68

 violations, 116

addslashes, 21–22

algorithms

 asymmetric, 37

 decryption, 53

 default bcrypt, 44

 secure PBKDF, 140

 standard AES-256 encryption, 56

Amazon, RDS, 56, 75

Amazon, S3, 79

Amazon. WAF, 129

API, 37, 122–23, 128, 131–33, 135–40, 142,
144–47, 156, 174

 authentication, 138

 managing keys, 55

 REST, 135

application

 container, 64–65

 errors, 114

 logs, 117

 mobile, 66

 passwords, 144–45

 production, 105

 risks, 135, 164

 security risks (ASRs), 1, 8, 12–14, 31, 47, 122,
130, 139, 183

 security team, 184

 server, 40, 62, 71, 96, 113, 124

 state, 5, 66, 113

ASR1, 17–18, 20, 22, 26, 28, 30, 77, 84, 122, 138

ASR2, 33–34, 36, 38, 40, 42, 44, 46, 58, 122

ASR3, 47–48, 50, 52, 54, 56, 58, 72, 122

ASR4, 59–60, 62, 122

ASR5, 19, 63–64, 66, 68, 122

ASR6, 31, 49, 55, 71–72, 74, 76, 80, 122

ASR7, 83–84, 86, 88, 90, 122, 150

ASR8, 95–96, 98, 100, 122

ASR9, 22, 103–4, 106, 108, 110, 122

ASR10, 111–12, 114, 116, 122

ASRs. See application security risks

attack

 cross-domain, 150

 phishing, 165

 protection, 123

 replay, 155

auditing, 109, 111

authentication, 33, 37, 39, 46, 49, 52, 56, 63, 66,
68, 76, 78, 136, 138, 143–45

 basic, 5, 138

 multi-factor, 138

 strong, 151

authentication function, 39

authorization, 46, 63, 68–69, 114, 140, 149, 151

Sam
ple

Security Principles for PHP Applications186

Index

B
bindParam, 151, 155

Bitbucket, 53, 173–74

blacklist, 28, 167

Broken Access Control, 12, 19, 63–64, 66, 68, 122

BruteProtect, 143

Bug bounty programs, 66

C
Cargill, Tom, 1

Cloudflare, 31, 129–30

Codacy, 179

code

 complexity, 179

 dependencies, 109

 deploying, 53

 proof-of-concept, 184

 review, 122, 171, 173–74, 177

 standards, 179

Code Climate, 179

codex.wordpress.org, 68, 157

commands, arbitrary, 28–29, 31

Composer, 3, 108–9, 129, 145

 lockfile, 106

content security policy (CSP), 113

credentials, 2, 48–49, 54–55, 63, 81, 145

 managing, 48

 shared, 49, 54

credit card, 34, 47, 50, 67

Cross-Origin Resource Sharing (CORS), 152

Cross-Site Request Forgery (see CSRF)

Cross-Site Scripting, 12, 83–84, 86, 88, 90, 122,
150, 184

CSRF, 20, 149–50, 152, 154–60

 attacks, 152–53, 156, 160–61

 Guard, 157–58

 invalid token, 155

 PHP Frameworks, 156–57, 159

 protection, 153–54, 156

 tokens, 154, 157–58

curl, 18, 22, 99, 167

D
database

 client applications, 56

 multiple servers, 49

 MySQL, 49, 87

 users, 81

decrypt, 41, 52, 56–58, 140, 144

denial-of-service, 18, 31, 79, 95, 129, 133

deserialization, 100–101

disclosure

 major security, 160

 responsible, 69, 183–85

Drupal, 3, 68–69, 104, 160, 178

 forms API, 157, 160

 hooks, 29

 security team, 181

E
email, 5, 17–18, 48, 50, 65, 86, 88–90, 99, 104,
116

Sam
ple

﻿

Security Principles for PHP Applications 187

encryption, 36, 42–43, 47, 51–52, 55–58, 136,
140, 144

 server-to-client, 143

 standards, 3

environment, multitenant, 106

errors

 fatal, 74, 125

 handling, 73, 77

 log, 116

 silence, 73, 78

escapeshellarg, 28, 105

escapeshellcmd, 105

eval, 8, 79, 98, 178

F
fail2ban, 113–14, 142

 configured, 114

Ferrara, Anthony, 45

form

 processing, 160

 submissions, 42, 153–55, 159, 167, 169

fuzz, 19, 138

G
garbage collection time, 146

GitHub, 53, 109, 145, 173–74

GitLab, 53

Google, 107, 145

Grossman, Josh, 13

H
hash

 algorithms, 44, 100, 136

 collisions, 100

 cryptographic, 44, 51

 password, 38, 44

 secure, 140

 tables, 99

HashiCorp Vault, 55

HeartBleed, 104, 109, 185

HHVM, 109

HMAC, 36–37, 43, 159, 168–69

 signatures, 36–37

Hornby, Taylor, 52

Hunt, Troy, 181

I
injection attacks, 17, 19, 22, 31, 109, 139

input

 injected SQL, 22

 parses XML, 59

 random, 19

 sanitizing function, 172

 unsanitized, 27, 145

 user-defined, 113

 validating, 135, 138

Insecure Database Lookups, 38, 45

Intrusion detection systems, 128–30, 133

Sam
ple

Security Principles for PHP Applications188

Index

J
JavaScript, 8, 36, 85, 135, 152

 in-page, 152

 unescaped, 83

JavaScript Object Signing and Encryption. See
JOSE

joind.in, 181

Joomla, 104

JOSE, 3–4, 36–37, 42

 libraries, 36

 specification, 42

JSON, 3, 95–96, 98–101, 135, 152, 180

 document, 99–100

 Object Signing, 3

 Web Token Libraries, 4, 37

 Web Tokens, 4, 36

K
Krebs, 181

L
Laravel, 178

letsencrypt.org, 77, 143

libsodium, 57

libxml, 61–62

logs, 28, 64, 78, 101, 111–17, 138–39

 server error, 125

M
MAC (message authentication code), 53, 58

md5, 137, 177

Memcached, 41, 124, 140

message authentication code. See MAC

Microsoft Azure, 79

MIME type filtering, 24

ModSecurity, 130

monolog, 116

MySQL, 27, 38–39, 45, 49, 75–76, 80, 87, 90, 108,
124

 truncation error, 90

 Workbench, 80

N
National Institute of Standards and Technology
(NIST), 180

National Vulnerability Database, 180

NGINX, beacons, 104

Nomad PHP, 182

nonce, 157–61

O
OAuth, 56, 145

 flow, 144

 token, 63

object injection vulnerabilities, 96–97

OpenID, 59

 Connect, 36, 43, 56

OpenSSL, 104, 109

Open Web Application Security Project[1]. See
OWASP

OWASP, 11–14, 122, 130

 mailing list, 12

Sam
ple

﻿

Security Principles for PHP Applications 189

P
Packagist, 109

Paragon Initiative Enterprises, 179

password, 33, 37–41, 43–46, 48, 55, 63–66, 75, 81,
88, 112, 136–38, 140, 143–44, 184

 hashing, 38, 43, 57–58

 plaintext, 43–44

 strength, 37

PBKDF, 140

PCI, 6, 50

 compliance, 49

PHP-based Intrusion Detection System, 128

PHP CodeSniffer

 definitions, 178

 standards, 178

PHP-FPM, 73

 running, 74

PHPMailer, 22, 77, 104–6, 109

PHProxy, 106–7

POST

 arguments, 83

 body, 152

 superglobal, 17

 variable, 84

PSR-1, 178

PSR-2, 178

PSR-3 Logger interface, 116

R
RASP, 130, 133

Red Teaming, 174–75, 183

remote code execution attacks, 95

Remote Procedure Calls (RPC), 59, 126, 135

request

 frequency, 124

 IP, 113

 monitoring, 137

 throttling, 5, 140

REST interface, 78, 156

Rogue Wave Software, 179, 182

RSA, 36–37, 43

Runtime Application Self-Protection, 130

S
salt, random, 43–45, 140

sanitize, 21, 26–29, 31, 65–66, 77, 88–90, 104,
145, 172

 user input, 31, 85, 88

 values, 22

Satis, 109

Schneier, Bruce, 181

scripts

 arbitrary, 18

 client-side, 42, 145

 embed, 150

 injected, 89

 loading, 74

 malicious, 138, 156

 remote, 30, 74

Sam
ple

Security Principles for PHP Applications190

Index

security

 advisories, 181

 audits, 179

 checklist, 14

 community, 69, 180

security risks, 2, 79, 105, 107, 111, 137

 common, 184

 disclosing, 69

Sendmail, 22, 77, 79, 104–5

Sensio’s Security Advisories Checker, 106

Sensitive Data Exposure, 12, 47–48, 50, 52, 54, 56,
58, 122

serialize, 96–97

 native, 95

server

 certificate, 60

 environment, 31, 106

 headers, 104

 multiple, 40, 49

 staging, 54, 72

 tokens, 73, 76

ServerName, 77

Server-Side Request Forgery (SSRF), 59

session

 active, 64–65, 67

 client-side, 35, 40

 cookies, 42, 139

 encrypted, 41

 expired, 21, 26–27

 handler, 40

 ID, 20–21, 25, 35–36, 40

 identifier, 35–36, 139, 146, 151

 server-side, 40, 64

 stores, 34–35

 takeover, 145

 timeouts, 145

 tokens, 33, 159

Sessionz, 41

Shellshock, 109

Slack, 116

Slim, 140, 157–58

 CSRF, 157

SOAP, 59, 135, 156

 interface, 139

sodium, 57–58, 140

SQL, 17, 22, 178

 arbitrary, 172

 injection, 20, 25, 26m 31, 86

 parameterized statement, 25

SSH

 key, 60

 tunnel, 80

SSL certificates, 73, 77, 166

SSRF (Server-Side Request Forgery), 59

Static Code Analysis, 177

Stored XSS, 85, 87, 89

Stripe, 50

stripslashes, 20

Symfony, 68–69, 156, 158, 161, 178

 Authorization, 68

 CSRF component, 161

 Security Component, 68

Sam
ple

﻿

Security Principles for PHP Applications 191

T
timing attack, 45

TimThumb, 23–24, 30–31

tokens

 access, 3, 138

 authentication, 145

 custom, 144

 non-random, 154

 reset, 39, 45

 signing, 36

Transport layer security, 144

Travis CI, 54

Twitter, 166, 173, 180

two-factor authentication code, 63

U
unserialize, 35, 95–96, 98, 100

users

 authenticated, 14, 63, 67–69, 113–15, 153

 privileged, 19, 54

UUID, random, 136

V
validation, 4, 58, 88, 159–60, 167, 169

VPN, 50–51

vulnerability disclosure, 122, 181, 185

W
WAF (web application firewall), 13, 129–30,
132–33

 dynamic, 129

 open-source, 130

web application firewall. See WAF

whitelist, explicit, 23, 27, 100, 167

WordPress, 22, 26, 68–69, 87, 90, 104, 114,
126–28, 130–32, 136–37, 143, 157–60, 178, 180,
184

 filters, 29

 nonces, 159

 plugin, 20, 39, 114, 131

 SQL injection, 25

 team, 184

 XML-RPC interface, 131, 137

X
XEE. See XML External Entities

xkcd.com, 19, 37

XML, 59, 61–62, 95, 135

 External Entities (XEE), 12, 59–60, 62, 122

 parser, 62

XML-RPC, 126, 131–33, 136–37, 139, 156

 code, 132

XSS, 12, 83–84, 86–88, 90, 122

 attack, 83–84, 87, 150

 reflected, 84, 88

XXE, 59–60, 62

Y
Yubikeys, 55

Z
Zend, 182

ZendCon, 182

Zend Framework, 178

Sam
ple

	Application Security From First Principles
	The Common Mistake
	An Example of Broken Standards Implementation—JOSE
	A Security-First Mindset
	Accurate Threat Models
	Looking Ahead

	About This Book
	Who This Book Is For
	How to Use This Book
	Code Examples

	OWASP
	The OWASP Top Ten
	The Risk of Lists

	ASR1: Injection
	How Big of a Deal Is This?
	How Would This Look in Production?
	How to Prevent These Vulnerabilities
	Conclusion

	ASR2: Broken Authentication and Session Management
	Issues Facing Authentication
	How Could Each of These Be Fixed?
	Conclusion

	ASR3: Sensitive Data Exposure
	What Are Some of the Practical Risks to Sensitive Data?
	How Can These Risks Be Effectively Mitigated?
	Conclusion

	ASR4: XML External Entities (XXE)
	How an Application Can Be Exploited
	How Do We Prevent Loading External Elements?
	How Do We Prevent Expanding Elements?
	Conclusion

	ASR5: Broken Access Control
	How Would This Look in Production?
	Has This Ever Happened?
	How Would This Code Look If Patched?
	Conclusion
	What Did United Airlines Do?

	ASR6: Security Misconfiguration
	How Would This Look in Production?
	How Would This Code Look If Patched?
	Conclusion

	ASR7: Cross-Site Scripting (XSS)
	How Would This Look in Production?
	How Would This Code Look If Patched?
	Conclusion

	ASR8: Insecure Deserialization
	Object Injection Vulnerabilities
	DoS Vulnerabilities
	Potential Production-Ready Solutions
	Conclusion

	ASR9: Using Components With Known Vulnerabilities
	What Does This Look Like in Code?
	Are Libraries the Only Risk?
	PHP as a Root Dependency
	How Do You Protect Yourself?
	Auditing the Entire Application Stack
	Conclusion

	ASR10: Insufficient Logging and Monitoring
	Why Logging Matters
	What Events Should We Log?
	What Data Should We Log?
	How Should We Log Data?
	How Much Logging Is Too Much?
	Conclusion

	Keeping Ahead of the Trends
	A Living Standard

	Insufficient Attack Prevention
	How Would This Look in Production?
	Request Size
	In the Wild: WordPress XML-RPC Vulnerability
	What Can I Do About It?
	Conclusion

	Underprotected APIs
	What Are Some of the Potential Vulnerabilities?
	How Can These Be Prevented?

	Cross-Site Request Forgery (CSRF)
	How Would This Look in Production?
	How Could This Be Prevented?
	How Do the Various PHP Frameworks Handle CSRF?
	Conclusion

	Unvalidated Redirects and Forwards
	How Would This Look in Production?
	How Would This Code Look If Patched?

	Peer Code Review
	Red Teaming

	Further Reading and Resources
	Static Code Analysis
	PHP_CodeSniffer
	Paid Utilities
	Security Audits
	The PHP Community
	Mailing Lists and Feeds
	Blogs and Resources
	Conferences and Workshops

	Responsible Disclosure
	How to Disclose
	How to Handle Disclosure

	Index

