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Chapter

4
ASR1: Injection

Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted data 
is sent to an interpreter as part of a command or query. The attacker’s hostile data 
can trick the interpreter into executing unintended commands or accessing data 
without proper authorization.

The risk of injection is one of the most common and well-known vulnerabilities in application 
development. From a high level, injection attacks happen when an attacker has the ability to control 
the input of your program. If they can write directly to a database, such that their nefarious data is 
passed unfiltered, they can inject whatever control systems they wish.

A common injection vulnerability is passing parameters directly from the $_POST superglobal, 
which is user-controlled, into a SQL statement:

VULNERABLE

// a common SQL injection vulnerabilty 
$name = $_POST['name']; 
$sql = "SELECT * FROM users WHERE email='$name'"; 
$result = $db->query($sql);
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ASR1: Injection

Assume for a moment this code is meant to look up ticket information for a given user attending 
a conference. A regular form submission would send the user’s email to the server and return a row 
from the database representing that ticket. Consider instead what would happen if an attacker were 
to trigger the following cURL request:

curl -X POST -d "name=a@b.com' OR 1=1;--" http://yoursite.com

The server would accept this value and happily concatenate it into the SQL query, generating the 
following statement:

SELECT * FROM users WHERE email='a@b.com' OR 1=1;--'

The OR in this query will always evaluate to true, and the -- at the end forces any content following 
the broken query to be treated as a comment. Instead of returning a specific user’s data, this new 
query will return the entire users table from the database! The attacker now has all of your attendees’ 
information and can do whatever they wish with it. Further, an attacker could inject any query 
following this same pattern, potentially injecting, modifying, or even deleting data.

In the PHP world, injection like this occurs when developers erroneously trust user input. The 
vulnerable code above allowed users direct input into SQL queries, making the database do some-
thing other than it was intended. Other users can manipulate query variables that are used internally 
to switch application logic from one, expected flow to another. Still, other users might inject execut-
able PHP code into a header that is extracted and inadvertently executed by the application, giving 
this user control over the PHP stack itself.

Said another way, injection is when you, the developer, give a user the power to dictate what code 
is being executed. You’re then running their application, and they can do whatever they want. They 
can dump sensitive data to output. They can write extraneous files to disk. They can insert malicious 
information into the database. The sky is the limit.

At a minimum, allowing users to download, install, and execute arbitrary scripts could let them 
fill your server’s hard disk with junk. The worst-case scenarios, however, are far more chilling. Among 
other things, an attacker could:

•	 Use your server as part of a network to launch a denial-of-service attack against someone else.
•	 Send spam or phishing emails to third parties.
•	 Use your server as a proxy or host for other illegal activities.

Abdicating control over the behavior of your application to arbitrary users gives those users a 
great deal of power; at the end of the day, though, you are still ultimately responsible for what your 
server does.

How Big of a Deal Is This?
It’s easy as a developer to discount injection as a serious risk to your application. Often, injection 

vulnerabilities are reported as the ability for a rogue user to input garbage into an application—the 
easiest response to such a report is to shrug it off as “garbage in, garbage out.”
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Note: It’s equally easy to discount injection vulnerabilities applying only to trusted admin or supe-
ruser access. Many developers will, mistakenly, assume the only users who ever have access to these 
accounts are “trusted” in the first place. However, if the application ever exposes a privilege escala-
tion vulnerability, or one of these privileged users is tricked into running a malicious command, the 
consequences to your application could be huge. The chapters on ASR5: Broken Access Control and 
Cross-Site Request Forgery have deeper explanations of each issue.

These reports of garbage being inserted into database fields often come from researchers using 
tools to “fuzz test”[1] your application. Fuzz testing is the practice of providing broken, unexpected, or 
purely random input to an application to see what happens. With binary, non-memory-safe applica-
tions this is an excellent way to test the handling of invalid input.

Are strings accepted in place of integer inputs? What happens when I pass a control character to a 
function which otherwise takes benign input? Can I make the application do something unexpected? 
Can I use this behavior to manipulate the application into doing something other than what was 
intended?

In some situations, though, the garbage input does make the application behave in ways it’s not 
supposed to. The popular webcomic, xkcd.com, illustrates various security principles on occasion. In 
this instance, the danger of allowing user input into a SQL statement, see Exploits of a Mom[2].

The ability to inject non-alphanumeric characters into a SQL statement makes it trivial to inject 
your own queries into an otherwise trusted framework. An attacker can SELECT data to which they’d 
otherwise lack access. Another attacker could insert themselves into a list of “administrator” users in 
the database and take control of the system. Yet another attacker could merely destroy the data upon 
which your application relies.

Further, not protecting against certain character sets can negatively impact your users down the 
road. Consider users with names containing apostrophes (“O’Malley” or similar) or non-Latin char-
acters. Any of these could potentially break a SQL statement if not properly escaped.

Injection attacks happen frequently in the wild, most frequently when developers are using unpa-
rameterized SQL queries or otherwise passing untrusted user input into executable environments. 
They give the user (or an attacker) a level of control over the system equivalent to the application 
itself.

[1]	 “fuzz test”: http://phpa.me/wikipedia-fuzzing
[2]	 Exploits of a Mom: https://xkcd.com/327/

How Would This Look in Production?
Attackers can inject their code into your application in three different ways:

1.	 They can inject additional queries into a SQL statement.
2.	 They can render malicious user-submitted input through a form (or query or header) that is 

then used directly in PHP. This also allows cross-site scripting attacks, covered in detail later 
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ASR1: Injection

in the chapter on CSRF.
3.	 They can upload an executable script which is later invoked through another exposed vulner-

ability.
The code exposing these vulnerabilities looks slightly different in each case, but all have the same 

root characteristic: the code trusts user input to fall within certain bounds. It also fails to validate the 
input or those bounds.

SQL Injection
An older WordPress plugin I built suffered from an injection-related flaw somewhat recently. 

While I was trying to do my best to protect code from untrusted user input, I mistakenly assumed 
certain parameters were escaped that, in fact, were not.

The code in question had two fatal flaws. The code was trusting data stored within user-provided 
cookies; in this case, it trusted it had generated a session ID stored within a cookie itself.

In the application’s session controller, the following constructor would grab a predefined cookie 
and extract various data from it. The code assumes the first part of the cookie is a valid session ID 
and stores it in the controller for later use.

Listing 4.1 VULNERABLE
 1. protected function __construct() {
 2.    if (isset($_COOKIE[WP_SESSION_COOKIE])) {
 3.       $cookie = stripslashes($_COOKIE[WP_SESSION_COOKIE]);
 4.       $cookie_crumbs = explode('||', $cookie);
 5. 
 6.       $this->session_id = $cookie_crumbs[0];
 7.       $this->expires = $cookie_crumbs[1];
 8.       $this->exp_variant = $cookie_crumbs[2];
 9. 
10.       // Update the session expiration if we're past the variant time
11.       if (time() > $this->exp_variant) {
12.          $this->set_expiration();
13.          delete_option("_wp_session_expires_{$this->session_id}");
14.          add_option("_wp_session_expires_{$this->session_id}",
15.                     $this->expires, '', 'no');
16.       }
17.    } else {
18.       $this->session_id = WP_Session_Utils::generate_id();
19.       $this->set_expiration();
20.    }
21. 
22.    $this->read_data();
23.    $this->set_cookie();
24. }
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