
The Magazine for PHP Developers

www.phparch.com
NOVEMBER 2024

Volume 23 - Issue 11

Lounging Around
with PHP

PHP, CouchDB, and Chill
Building Serverless PHP applications

Also Inside:
������������������������������
���������������

	
��
���

��������������������������������
�����
���������������� ��������������
	

��­­���
���������� ��������������������

https://honeybadger.io

 www.phparch.com \ November 2024 \ 3

FEATURE

PHP, CouchDB, and Chill
Eric Van Johnson

I have relationship issues. Not in my personal life. My wife and I have been married for over
35 years. No, my problems are with my data. Like many developers my age, when we wanted
to store data for our application, we would reach for a database server like MySQL, Postgres,
MSSQL, or some other relational database. The relational database was “the way,” and I never
gave it much thought once I started down that path.

Database tables with relationships to other tables require
some management. If you need to delete a record with a
relationship, you must delete the data with a single relation
to that record. Thanks to ORMs like Laravel Eloquent and
Doctrine, this isn’t too difficult to handle anymore, but it is
still something you must remember to set up and configure.
With relational databases, there were always use cases that
bugged me. For me, it’s phone numbers. I remember the first
time I needed to store multiple phone numbers for a user.
My first approach was creating columns on my table, such
as phone and work_phone. Then, I was asked to add cell_phone.
Then, the use case came up where the user might want to add
their partner’s or parents’ numbers. I couldn’t add a column
other_number because the user might want to define multiple
numbers. As you can guess, I created another table called
phone_numbers with the number type and number and
migrated my existing data to it. I set up that relationship, and
it worked. But now I needed to remember that this relation-
ship existed and to ensure all of a user’s phone numbers were
added to my queries

The next request was to mark one of the numbers as the
primary number. As you can probably guess, I added a column
primary to the phone_numbers table. But now I also need to
ensure that each user only has one primary number. It’s not a
major issue, but it started feeling like little paper cuts for such
a relatively small dataset.

How many of us added a twitter_handle to our database
because back in the day, what else was there to worry about?
Now, a new social network pops up every other month

As developers, we can overcome any data issue with enough
code, but what if you didn’t have to worry about that? What if
you treated your data like documents in filing cabinets?

💡 Side note: It terrifies me as I write this that there
might be a need to explain what a filing cabinet is to
some younger readers. Google it if you don’t know :-)

Enter the world of the “Document Store.” After years of
working with relational databases, this simple concept was
mind-bending to me. My coding brain could not compre-
hend such a straightforward approach: Put all your data into
one document?

I was aware of document stores, specifically MongoDB. I
would play with it but never understood when I would need
such a solution. However, I started working for a company that
was using Apache CouchDB (https://couchdb.apache.org/1 .
It was initially so frustrating, and I never got my head around
CouchDB at that time. It wasn’t an issue because I wasn’t
a developer. I just needed to make sure my team managed
the servers CouchDB was running on. As luck would have
it, years later, I would hire someone from that development
team, and we had several conversations about document
stores and CouchDB specifically. They even convinced me to
add it to one of our client’s infrastructure stack, and today,
I genuinely appreciate what document stores and CouchDB
bring to the table

An Uncomfortable Feeling
One term you will need to get comfortable with is “eventual

consistency.” I hear you barking, big dog, “How is that even
a thing, and when would that EVER be OK?” Stick with me;
we’ll get there, I promise. One more note, for years, docu-
ment stores were not ACID compliant. MongoDB was the
first ACID complaint document store I remember hearing
about. As of writing this, I now see that the CouchDB docu-
mentation has a section “ACID Properties” (https://phpa.me/
couchdb-overview2 . I haven’t familiarized myself with this
overview, but it was worth mentioning for those who find this
important.

One of the things that keeps drawing me to CouchDB as
opposed to others like MongoDB are the drivers or the lack of
drivers for it. You can find packages for languages and frame-
works for CouchDB, but honestly, I have yet to find much of a
benefit in using them because CouchDB works off the HTTP
protocol, and it’s outstanding. You can talk to it directly with
something as simple as curl in the terminal. It uses GET, POST,
PUT, and DELETE. In all these cases, CouchDB will return a
JSON response to you.

1	 https://couchdb.apache.org/
2	 https://phpa.me/couchdb-overview

phparch.com
https://couchdb.apache.org/
https://phpa.me/couchdb-overview

4 \ November 2024 \ www.phparch.com

PHP, CouchDB, and Chill

Getting It Up and Running
Installing CouchDB is pretty simple. There are packages for

most distros as well as Docker solutions. I am not going to
get into a lot of details about the installation process, but just
be aware that if you are hosting CouchDB for production or
even on the public intranet, you need to take some time and
read the section of CouchDB outlining important security
steps (https://phpa.me/couchdb-security3 .

For this article, I will be using a Docker solution.

docker run -d --name archie1 -e COUCHDB_USER=admin
 -e COUCHDB_PASSWORD=elephpant
 -p 5984:5984 apache/couchdb

Now, when we open a browser and hit the new HTTP
endpoint on our server, http://batcomputer:5984/, we are up
and running. Yes, the “batcomputer” is one of the computers
in my internal lab, so don’t judge me; my wife will do it for
you.

Much like packages for CouchDB, I am not aware of
any GUI clients for it worth getting, but fear not because
CouchDB comes with Fauxton. You can access your Fauxton
install in your browser by adding the path /_utils to your
CouchDB instance. This means our URL is now http://
batcomputer:5984/_utils/. You will be presented with a login
screen for an admin user. For us, it’s the COUCHDB_USER and
COUCHDB_PASSWORD variables we passed to the docker command.
Once logged in, you should see something like Figure 2.

It’s nothing super exciting, but it is not bad for a quick
Docker command to get up and running. At this point, you
can click around, and you’ll see a lot of things you would
expect to see in a database client. You see your databases,
which, at this point, we don’t have any. You see a place for
settings, replication, documentation, a place to manage users,
and some other things.

Since we’re here, let’s create a database by clicking on
"Create Database" in the upper right and let's call it my-podcast
as shown in Figure 3.

Non-partitioned versus Partitioned is outside the scope of
this article, but chances are you only need Non-partitioned.

3	 https://phpa.me/couchdb-security

Figure 1.

Figure 2.

Figure 3.

phparch.com
https://phpa.me/couchdb-security

 www.phparch.com \ November 2024 \ 5

PHP, CouchDB, and Chill

If you need Partitioned, then you understand what it is and
why you need it.

No Schema
Now we have our database.
Let’s click on our database and create a document. You’ll

notice that there is no concept of tables or making any sort
of sub-division of the database. There are only documents at
this level.

The first thing you might notice is that it’s just a JSON docu-
ment. You might also notice an ID already assigned to the
document. CouchDB autogenerates it, but it is not a simple
increment ID. You can, however, change this id to anything
you want. If you are adding a user with UUID associated with
them, and this was a user document, then you might decide
to change the document ID to that user’s UUID. The critical
thing to remember is that this ID must be unique to all the
documents in the database, now and forever.

This is where the world of “no schema” really starts to hit
you. You need to be a disciplined developer. It would help if
you also had a general understanding of data structure and
architecture. The freedom a schema-less database gives you
will be unmatched for this added discipline.

I can leave this document ID and start building my JSON
document. But later, you’ll see that this will make it more chal-
lenging to know what’s inside the document when looking at
the database. This document will capture the podcast host’s
information, so I will use a very simple naming convention of
prepending "host-" to the id and start adding the host’s infor-
mation as part of the JSON structure as shown in Figure 6.

Currently, this is basic stuff. You will see that I created an
object containing services and handles for socials. This is

opposed to creating another table with a relationship in a
relational database. I’ve also added an avatar to the record by
base64 encoding an image. Now I click “Create Document,”
and I am done. I have my first record as seen in Figure 7.

💡 Sidebar: I am sure a few of you are already think-
ing, “This is nothing special. Most modern relational
databases these days have a JSON column type that
would take care of that socials section without the need
for another table.” This is true, but we are just getting
started. Stick with me.

A Revelation
Let’s open up the record we just created.

You will see that CouchDB has now added another key
called _rev. Let’s make a change to our record and see what
that does. I am going to add another social handle, save the
document, and open it up again.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

phparch.com

6 \ November 2024 \ www.phparch.com

PHP, CouchDB, and Chill

You’ll see that the first digit in the _rev has incremented
by 1. This tells me how many times the document has been
updated. And it will continue to count up every time the
record is changed.

We don’t have any information about the podcast itself,
which would be good to track. With most databases, we
would probably create another table called podcasts even if all
we had at the time was this one podcast, but with CouchDB,
we create a new document in the database.

I hope you are seeing some of the flexibility now. This docu-
ment has its own set of data..

A new host joins the podcast. We are now at a critical stage.
Do we add the second host to the same document the first
host was in, or do we create another separate document? The
good news and bad news is there is no wrong answer here.
What I mean here is that the existing host document can be
added to as much as you would like. If we want to go back to
our original document, take this first host and add them to an
object, and then add a second object to put the information
on the new host, we can do that. This would require some
coding updates in your application because the data for the
first host won’t be in the same place it was before; it will be a
layer lower.

Personally, I would add another document, and that is what
I am going to do. Like the “podcast info” document we created,
the new host document does not need to match the other one.
More importantly, maybe I want to start tracking both hosts’

equipment and a mailing address. It is simple enough to add
that information to the existing document and add it to the
new document. No database migrations are needed.

CouchDB’s documentation includes a section called Docu-
ment Design Considerations4 that is probably worth reading.
Another section to look at is Best Practices5 , which discusses
more about the usage of CouchDB.

Things are Getting Serious

Alright, things are starting to build out. At this point, I’ve
added some more documents. Now, our database has one
podcast info document, two host documents, and three
episode documents. But looking at this, I realize I should
have included the episode number in the naming convention.
But now I have a little problem because CouchDB doesn’t
like it if you mess around with the ID once the document
has been created. You can try to change it if you want. First,
you’ll want to remove the _rev. Even then, if you change the
ID, CouchDB will create a new document, and we will end
up with four episode documents, with one being a clone with
a different ID. Again, I will stress that you should take some
time and carefully consider your naming conventions. But it’s
not the end of the world for us.

You may have noticed that we are looking at the “Metadata
view” (Shown in Figure 13 on the next page) and that there
is also a “JSON View” and “Table view.” The JSON view just
displays all the JSON in the documents. It’s not a terrible

4	 https://phpa.me/couchdb-docs
5	 https://phpa.me/couchdb-best-practices

Figure 10.

Figure 9.

Figure 11.

Figure 12.

phparch.com
https://phpa.me/couchdb-docs
https://phpa.me/couchdb-best-practices

 www.phparch.com \ November 2024 \ 7

PHP, CouchDB, and Chill

option, but that is because we don’t have thousands of docu-
ments of varying lengths in our database. The “Table” view is
a nice option because it identifies all the keys in all our docu-
ments and lets us display them that way.

This is better, but again, we don’t have a lot of documents
with different keys, so the list isn’t that long. Also, I have
records here that don’t even include episode information.
We will look at the section under “All Documents” called

“Run A Query with Mango.” Mango is the query language for
CouchDB.

Let’s write a Mango query that only shows episodes in order
of episode number.

The first thing we want to do, like a relational database, is
define some indexes to help speed up the search. Let’s do that
first. We’ll create an index for the ID itself because we know
we want to search on that since it’s what identifies an episode
document by starting the ID with the word episode.

{
 "index": {
 "fields": ["_id"]
 },
 "name": "id-index",
 "type": "json"
}

Next, I will create an index for the episode number.

{
 "index": {
 "fields": ["number"]
 },
 "name": "number-index",
 "type": "json"
}

Now that I have those, I can run my mango query.

And now I only see documents that start with the word
“episode.”

This feels like progress, but you might notice something
odd. If we go back and look at our complete database again,
we will see new documents starting with the _design/. Well
remember those indexes we created? They are now documents
in the database as well. Also, notice the naming convention

Figure 13.

Figure 14.

Figure 15.

Listing 1.

 1. {
 2. "selector": {
 3. "_id": {
 4. "$regex": "^episode"
 5. }
 6. },
 7. "sort": [
 8. {
 9. "number": "asc"
10. }
11.],
12. "limit": 50
13. }

Figure 16.

phparch.com

8 \ November 2024 \ www.phparch.com

PHP, CouchDB, and Chill

it’s using, which is prefixing the ID with the word _design and
a / like a URL. It will fit nicely with a URL format if I ever
need to make a curl call. I should have probably taken the
same approach of using a / instead of a - to separate my ID
for “host,” “info,” and “podcast,” but honestly, I forgot about
this 😁

The next thing we will want to do is create our own “Design
Document” view using MapReduce. I think of a design docu-
ment as a stored procedure. These are just queries we want
available to us. We will typically make sure we have good
indexes for these queries. Let’s create a design document to
do what we did with Mango and return all documents with
the word “episode” at the beginning of the ID.

function(doc) {
 if (doc._id && doc._id.startsWith('episode')) {
 emit(doc._id, doc);
 }
}

Now, we can run this view whenever we want a list of
episodes.

ENOUGH Already!!! What About the
PHP Part?

OK, you’ve been patient up to this point. I’ve got more to
cover on CouchDB, but let’s get your PHP fix out of the way.
Let’s spin up a new Laravel app

laravel new couchdb

Now, let’s add those CouchDB variables to our .env file. If
this were a real application, you would probably want to add
a config file and create a service to save you some coding, but
we will reference the .env file everywhere we need this infor-
mation.

Next, we open our web route file and create a route to
access all the documents in our document store using the
Laravel HTTP client.

If we go to the URL https://couchdb.test/documents, we’ll
get a JSON dump of all the documents in our my-podcast
database.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

phparch.com

 www.phparch.com \ November 2024 \ 9

PHP, CouchDB, and Chill

Let’s add a call to the get-all-episodes design document
view we created inside of CouchDB.

Now we head over to https://couchdb.test/get-episodes
and we see:

I think you get the point. You can use POST to create new
documents, PUT to update an existing document, and DELETE
to remove a document. Before using the JSON in your appli-
cation, you’ll probably want to turn it into an object, an array,

or a collection. That would be part of the “Service” you would
create.

I haven’t touched on it, but any URL you can hit in the
browser can also be hit with a simple curl command. This
means you can easily script things using data in your
CouchDB instance, and your application will have a RESTful
API interface out of the box.

Back On the Couch
We’ve just scratched the service of everything CouchDB

can do, and there is so much more, like attaching files to a
document. I know what you might think: “Fine, a schema-less
database is a neat trick, but I’m not sure it’s something I need.”
You wouldn’t be wrong. At the end of the day, a database is
just a database. If you are fine dealing with schemas, who am
I to say you’re wrong? But one relatively cool feature I skipped
over was “Replication.” And no, I am not talking about data-
base clustering, although CouchDB also has that if you have
a high-traffic site. And yes, I know Relational Database also
have “replication,” but nothing like this. Remember that term

“eventual consistency” I touched on earlier? Well, hear me out.
For starters, setting up one-way or bidirectional replication

between CouchDB servers is laughably easy. In the Fauxton
interface we were working in earlier, there is a section for
replication. You give it a source database and a target data-
base, including the server address, tell it if it is a one-time or
continuous replication, and that’s it.

And replication is blazing fast. We are talking seconds, not
minutes. Oh, and did I mention that you can also set up this
replication via curl, just like everything else in CouchDB?
That means you can do something as simple as create a bash
script that starts replication with another known server when
you spin up a new server. I know you can do this because this
is what I used to do. Having CouchDB run on all your servers
isn’t that unheard of, nor is it resource-intensive.

Figure 21.

Figure 22.

Figure 23.

Figure 24.

phparch.com

10 \ November 2024 \ www.phparch.com

PHP, CouchDB, and Chill

Regional database replication and failover are now a snap.
If you want a copy in-house, just set up a replication for that.
If you want one on your laptop, just set it up. It will be fine if
you turn off your laptop in the afternoon or go on vacation for
a week. When you get back online, the CouchDB instance will
get all the new changes sent to it.

You don’t even need to replicate all the databases on a server.
You may have one CouchDB instance you want to replicate to
a region on the other side of the world and another instance
you want to replicate to your in-house sales group to run
reports against. Not a problem for CouchDB.

But wait, there’s one more thing I still need to mention.
There’s a mobile equivalent. Let me introduce you to
PouchDB6, an open-source JavaScript database inspired by
Apache CouchDB. As of my writing this, PouchDB can repli-
cate, one-way and bi-directional, with CouchDB instances.
How do I know this? Because it’s a very real-world example
of how we use CouchDB today. Our client uses multiple
mobile devices in and out of facilities, which can cause them
to lose all internet connections for hours at a time. The mobile
devices run an application built using the Capacitor runtime
and PouchDB. When the users have access to the internet, the
database is updated. If the device loses internet connectivity,
the user can continue to work with the database they have
locally, and when they get back online, their changes are repli-
cated up, and any data they might have missed is replicated
down. You can even add filters to replicate only a subset or a
single document. It’s bonkers.

Finally, Some Drawbacks
There are some drawbacks, but depending on where you

stand on the topics, you might not consider them drawbacks
at all.

•  There is a real learning curve. It’s not that the concepts
are that difficult to understand, but personally, my
brain just kept fighting them. I couldn’t stop thinking
of data as something that needed a defined schema and
relationships. So, understanding how you are going to
capture data is essential.

•  It can be a little nerve-racking to not be able to access
your data without using traditional SQL queries at first.

•  It’s a fast-read, slow-write database. If your database
needs the same performance for reads and writes, this is
probably not the solution for you.

•  It doesn’t support transactions in the traditional sense.
•  A personal pet peeve I had to overcome was the idea

of not duplicating data. In a relational database, once
data is written, it should not have to be written again in
another place. With CouchDB, I can find myself ignor-
ing this rule. An example is a user who might add their
addresses to their profile, and their profile is a document
in CouchDB. Then, when a user orders something, you

6	 https://pouchdb.com/

will query the user’s addresses and let them select the
address they want to use for the order. A common prac-
tice with CouchDB would be adding that address and
other user information, like their name, to the docu-
ment representing that order. I sometimes will reference
the actual user’s document in CouchDB as well in the
order document. Still, I am replicating the information
even though I already have the information in the user
document. One way to look at this is that I don’t need
the user document for the function of the order itself. If
all I have is the order document, I have all the informa-
tion I need about that order in the order’s document to
fulfill that task.

•  Data integrity was another big one for me to come to
peace with. You can no longer depend on your database
server to be the last line of defense against having poor
data added to it. That is now in the hands of your devel-
opers, who must ensure they are validating all the data
correctly. If a phone number shouldn’t have a letter in it,
it will be up to your developers to watch for that, catch it,
and handle it correctly.

I truly encourage you to give CouchDB a look. As with
most things, the right tool for the right job. I still don’t have a
clear threshold for when I choose CouchDB over a relational
database, but it’s always in play when starting a new project. A
good video to check out is IBM’s CouchDB Explained7.

 Eric Van Johnson is the co-CEO of PHP
Architect, LLC. An organizer of San
Diego PHP (SDPHP) and podcaster with
php[podcast], PHPUgly, and PHPRound-
table. A husband, father, and enjoyer
of scotch and baseball. You can reach
him on X as @shocm or on Mastodon as
@eric@phparch.socal @shocm

7	 https://www.youtube.com/watch?v=aOE90VAVOcU

phparch.com
https://pouchdb.com/
https://twitter.com/shocm
https://www.youtube.com/watch?v=aOE90VAVOcU

